Processing costs of non-strict versus strict comparison

Chris Cummins RCEAL

Outline

- Semantic/pragmatic analyses of numerically-quantified expressions
- Strict and non-strict comparison as a locus of semantic/pragmatic variation
- Experimental support for the distinction
- Implications for the analyses

Numerically-quantified expressions

- Numerals
- "About", "approximately"
- "More than", "fewer than"
- "At least", "at most"
- "Up to", "maximally", etc.
- Traditional approach mathematical / settheoretic semantics

Geurts and Nouwen (2007)

• "At least", "at most" not semantically similar to "more than", "fewer than"

- Also have a modal component of meaning

- Evidence includes
 - Failure of inference "at most 2" -> "at most 3"
 - Differences in distribution
 - Differences in processing time

Nouwen (2008)

- "No more than", "no less than" not simply the negations of "more than", "less than"
 - Not comparatives, but exact expressions also expressing an attitude
- "This sofa costs no more than £399"
- "John passed no fewer than 5 A-levels"

Nouwen (2009)

- Two classes of modifier?
- Comparison with cardinal ("more than")
- Bound on a degree property ("at most", "up to", "minimally")
 - A triangle has fewer than 6 sides
 - [?]A triangle has up to/at most/maximally 6 sides

Interim summary

- Semantics of numerically quantified expressions variable and complex, OR...
- Analyses flawed, as posited semantics implausible, unlearnable
 OR...
- Meaning of these expressions driven by some other underlying consideration

Observation

- All these proposals split quantifiers into two groups, the classical and the non-classical
- All the non-classical cases appear to involve non-strict comparison
 - Definition: Non-strict comparison is of the form
 "greater than or equal to", "less than or equal to"
- Could there be something about non-strict comparison causing this? What? How?

Complexity of non-strict comparison

- Idea: Non-strict comparison more complex, at a cognitive level, than strict comparison
 - Not a 'simplex' operation, unlike strict comparison and equality?
 - Does the disjunction in the mathematical description reflect psychological reality?
 - Is non-strict comparison harder to work with, with regard to drawing inferences?

Testing the ease of processing

Testing the ease of processing

Testing the ease of processing

Testing the speed of comparison directly (pilot)

• "Press a key if the number on the left is..."

Testing the speed of comparison directly (pilot)

- Numerical trend towards slower verification of "or equal to" relation
 - Counterbalanced by rapid determination of the equality case
- However, some interpretive issues:
 - Instructions requiring disjunctive process?
 - Reverse distance effect makes analysis tricky
- Remain in search of a better protocol

The complexity-based account

- Complexity of non-strict comparison leads to markedness of corresponding forms

 which can therefore give rise to implicatures
- e.g. "John has at most three cars" vs. "John has fewer than four cars"
- Pragmatic enrichment towards Geurts and Nouwen's 'semantic' meaning

The complexity-based account

- coheres with observations not satisfactorily dealt with by existing accounts
- unifies various *ad hoc* proposals into a single coherent account
- does not stipulate meanings and thus increase the burden of acquisition

Conclusion

- Some evidence that non-strict comparison more complex than strict comparison
- This may have linguistic consequences and thus explain puzzling behaviours of numerically quantified expressions

Thank you!

References

Geurts, B. and Nouwen, R. (2007). "At least" et al.: the semantics of scalar modifiers. *Language*, 83: 533-59.

Nouwen, R. (2008). Upper-bounded *no more*: the exhaustive interpretation of nonstrict comparison. *Natural Language Semantics*, 16: 271-95.

Nouwen, R. (2009). Two kinds of modified numerals. In Solstad, T. & Riester, A. (eds.), *Proceedings of Sinn und Bedeutung 13*.