Can priming account for implicature failure? #### **Chris Cummins** Universität Bielefeld SFB 673: Alignment in Communication Project A3: Dialogue and Group Dynamics #### Summary - Priming alone does not account for the attenuation of certain implicatures - This is not entirely obvious given the data #### References - Bonnefon, J.-F., Feeney, A. and Villejoubert, G. (2009). When some is actually all: Scalar implicatures in face-threatening contexts. *Cognition*, 112: 249-58. - Breheny, R., Katsos, N. and Williams, J. (2006). Are scalar implicatures generated by default? *Cognition*, 100(3), 434-63. - Bultinck, B. (2005). *Numerous meanings: the meaning of English cardinals and the legacy of Paul Grice*. London: Elsevier. - Dehaene, S. (1997). The Number Sense. New York: Oxford University Press. - Fox, D. and Hackl, M. (2006). The universal density of measurement. *Linguistics and Philosophy*, 29: 537-86. - Geurts, B. (2006). Take 'five': the meaning and use of a number word. In Vogeleer, S. and Tasmowski, L., *Non-definiteness and Plurality*. Amsterdam: John Benjamins. 311-30. - Grice, H. P. (1975). Logic and Conversation. In P. Cole and J.L. Morgan (eds.), *Syntax and Semantics*, Vol. 3. New York: Academic Press. 41-58. - Horn, L. R. (1985). Metalinguistic negation and pragmatic ambiguity. *Language*, 61(1): 121-74. - Jansen, C. J. M. and Pollmann, M. M. W. (2001). On round numbers: pragmatic aspects of numerical expressions. *Journal of Quantitative Linguistics*, 8(3): 187-201. #### Outline - (Quantity) implicature - Its licensing conditions - What happens if the conditions are not met - Examples in the numerical domain - Priming - As a potential cause of implicature failure - New(ish) data from expressions of number - Exploring the possibilities of this account #### Implicature - Pragmatic enrichment - Arises from speaker's choice of words - Cancellable ### Early example If I say to any one, "I saw some of your children to-day", he might be justified in inferring that I did not see them all, not because the words mean it, but because, if I had seen them all, it is most likely that I should have said so John Stuart Mill, An Examination of Sir William Hamilton's Philosophy..., 1865 #### Grice's CP and maxims #### Cooperative Principle: "Make your contribution such as it is required, at the stage at which it occurs, by the accepted purpose or direction of the talk exchange in which you are engaged." #### Maxims of - Quality - Quantity - Relation - Manner #### Purpose of the maxims - Not prescriptive - Encode expectations about rational conversation - Hence flouting leads to reparatory inferences - Types of inference depend on maxim flouted ### Quantity implicatures Arise from flouting Quantity (I) maxim "Make your contribution as informative as required (for the current purposes of the exchange)" - Example: scalar implicatures - Use of weaker term in scale implicates falsity of stronger - <some, all> - <or, and> - <a, the> Horn scales ### Nature of scalar implicatures - Context-dependent? - Reliable - Slow (?) - Coherent with other pragmatic inferences - Or automatic? - Potentially unreliable - Fast - Distinct from (all?) other pragmatic inferences #### Nevertheless... - Whatever the mechanism, outcome is 'Gricean' - Failure of licensing conditions -> SI not (ultimately) obtained - Examples: - Incomplete knowledge (cf. Mill) - Irrelevance of stronger proposition - Politeness ### Incomplete knowledge e.g. Katsos et al. (in prep.) ### Incomplete knowledge e.g. Katsos et al. (in prep.) #### Irrelevance of stronger proposition - e.g. Breheny et al. (2006), <or, and> scale - Upper-bound context SIs apparently generated "Who will give the lecture?" "Bill or Ted from the department" - Lower-bound context fewer SIs "Who is available to give the lecture?" "Bill or Ted from the department" #### Politeness - Bonnefon, Feeney and Villejoubert (2009) - SIs blocked if stronger statement would be facethreatening "What impression did I make at dinner?" "Some people thought you drank too much." "Some people liked/hated your poem" ### Rational (Gricean) results - Inference is not drawn if the stronger statement could not be made because - Speaker not sufficiently informed - Stronger statement irrelevant to discourse purpose - Stronger statement impolite - All in the spirit of the Gricean approach #### Inferences with number expressions • "more than n", "fewer than n" seem exempt from Horn scales (Fox and Hackl 2006) ``` "John has more than three children" !+> "John has not more than four children" ``` - Why? - "Linguistic" answer: semantics of expressions #### Linguistics vs. psychology of number #### • Linguistics: - All integers should have similar types of meaning - Require inductive definition (e.g. Peano axioms) to make sense of infinite number line with finite experience - Therefore expect any integer to be essentially representative (e.g. Geurts 2006, Bultinck 2005) #### Linguistics vs. psychology of number - Psychology of number: - Integers vary widely in salience - Subitizable numbers should behave differently - Small and round numbers occur more frequently than large and non-round numbers (Jansen and Pollmann 2001) - Round numbers may correspond to scale points of an approximate number system (Dehaene 1997) ### New prediction for 'more than' - "More than n" should implicate (under usual conditions) falsity of "more than m" for any m s.t. - -m > n - *m* is at least as salient as *n* - e.g. "more than 100" - !+> "not more than 101" but - +> "not more than 1000/200/150..." #### Verification Cummins, Sauerland and Solt (submitted) *Information:* A newspaper reported the following. "[Numerical expression] people attended the public meeting about the new highway construction project." **Question:** Based on reading this, how many people do you think attended the meeting? Between _____ and ____ people attended [range condition] ____ people attended [single number condition]. Fielded (first) on MTurk: 6 conditions (2 prompts x 3 roundness levels) 100 participants per condition #### Verification #### Cummins, Sauerland and Solt (submitted) ANOVAs show significant effects of roundness to both range and single number prompts (p < 0.05) Comments reflect explicit awareness of this reasoning ## (Post-)Gricean explanation Equal salience as numeral equivalent of Horn's 'equal lexicalisation' - Non-round numerals behave like obscure or prolix expressions - Less accessible - More effortful to use - More work to interpret ### Priming vs. salience General landscape of numeral salience... ### Priming vs. salience …liable to be manipulated by priming effects #### Priming vs. implicature - Hearer able to take into account possible obstacles to stronger statement being made - its impoliteness - its irrelevance - it being beyond the speaker's knowledge and thus refrain from inferring its falsity How should a hearer treat a primed numeral? ### Priming vs. implicature • Suppose *n* is primed by prior mention, then: S: ...more than *n*... - Hearer should reason as follows - S could have said "more than m"[for some m > n matched in general salience] - However, n is primed and therefore more available than usual - Perhaps S said "more than n" in order to reuse the primed numeral... - ...and **not** because "more than m" does not hold #### Priming vs. implicature - Prediction: priming numeral results in weaker bounds, i.e. - "more than *n*" could refer to a larger value - "fewer than n" could refer to a smaller value than in the unprimed case #### Verification Cummins, Sauerland and Solt (submitted) Please read the following short dialogues, and answer the questions by filling in a value for each blank space, according to your opinion. Consider each dialogue separately. Assume that participant B is well-informed, telling the truth, and being co-operative in each case. A: We need to sell (60) tickets to cover our costs. How are the ticket sales going? B: So far, we've sold more than 60 tickets. How many tickets have been sold? From to, most likely 40 participants, paper questionnaire, 12 conditions: quantifier (2) by priming (2) by roundness (3) #### Verification Cummins, Sauerland and Solt (submitted) 2x3x2 ANOVA shows main effects of quantifier (F(1,41)= 8.66, p<0.01) roundness (F(2,80)=44.83, p<0.001) priming (F(1,40)=10.78, p<0.01) ### Follow-up Cummins, Sauerland and Solt (submitted) Salesman: This storage unit holds (60) CDs. How many CDs do you own? Customer: I have more/fewer than 60 CDs. How many CDs does the customer have? From to, most likely MTurk, 100 participants per condition Removing semantically false answers left 336 data points (84%) ### Follow-up results (upper bound) Primed responses more distant than unprimed (Mann-Whitney U, p < 0.001) ### Objections to this interpretation - Weak priming effects - Overlapping results - Same implicatures frequently obtained despite priming - Effects not due to low-level priming - Question Under Discussion (QUD) creates threshold value - Answers understood with reference to this - Note, however, that a stronger statement would still entail the answer to the QUD... ### Reanalysis of follow-up Salesman: This storage unit holds (60) CDs. How many CDs do you own? Customer: I have more/fewer than 60 CDs. - Customer is informed about topic - Reuse of numeral might reflect low-level priming or awareness of QUD ('is this unit OK?') - However, utterance is still likely to be vaguely indicative of quantity - cf. "Does Bielefeld have more than 1000 inhabitants?" # All QUD, no priming? - Perhaps... - ...but from first principles, priming should exert some effect - 'Marked' expression might become 'unmarked' - Use of such an expression might no longer involve (e.g.) flouting Gricean maxim - Hence implicature blocked for rational hearer # Separating QUD and priming? Cummins and Katsos (submitted) ### Priming effects in this experiment - Utterance conditions response, e.g. - "most" attracts "most...not" corrections - "some...not" attracts "all...not" corrections(where these are semantically appropriate) - QUD notionally fixed ("how many of the boxes have a toy?") - Could argue that Cavemom's utterance determines actual QUD... - ...but unrelated descriptions would still serve as felicitous corrections to it ## Separating QUD and priming - Applied to the numeral implicature case: - Priming account predicts any prior mention of the numeral should attenuate implicature - QUD account predicts that only a numeral relevant to the QUD should do so - Readily testable #### Other possible priming effects - Presupposition accommodation - Metalinguistic negation - (and related phenomena) #### Presupposition accommodation - Presupposition triggers, e.g. realise, can force accommodation of their arguments "I realised/didn't realise that Jim was lying" - However, these ps. can sometimes disappear "Mary didn't realise that whales are fish because whales are not fish" - Analyses focus on the hearer - But why is the speaker able to use a trigger? - Idea: priming licenses its use ### Metalinguistic negation - Horn (1985): negation as an objection to something other than the utterance's semantics "Grandma isn't feeling lousy, she is indisposed" "Anne didn't manage to win the race, she dominated it" - Generally, want to explain how the semantic meaning survives negation ## "...repeated tonelessly..." Less-discussed 'dual' (?) of MN A: We should go to the museum. B: We should go to the museum. - Flat intonation appears to distance speaker from semantics of (partially) repeated utterance - Alignment at one level, anti-alignment at another? #### Priming in MN? - Reuse of material seems to provide opportunity for non-expression of its semantics - MN: denial does not contradict - Other case: repetition does not endorse - Potential explanation in priming? - Utterance licensed by its availability - Interlocutor knows this and interprets accordingly - (cf. solicited vs. unsolicited feedback) #### Summary - Experimental data supports hypothesis of lowlevel priming affecting pragmatics - However, this could alternatively be attributed to higher-level effects - Future work can distinguish these claims - Possibility of extending similar analysis to other questions in pragmatics #### References - Bonnefon, J.-F., Feeney, A. and Villejoubert, G. (2009). When some is actually all: Scalar implicatures in face-threatening contexts. *Cognition*, 112: 249-58. - Breheny, R., Katsos, N. and Williams, J. (2006). Are scalar implicatures generated by default? *Cognition*, 100(3), 434-63. - Bultinck, B. (2005). *Numerous meanings: the meaning of English cardinals and the legacy of Paul Grice*. London: Elsevier. - Dehaene, S. (1997). The Number Sense. New York: Oxford University Press. - Fox, D. and Hackl, M. (2006). The universal density of measurement. *Linguistics and Philosophy*, 29: 537-86. - Geurts, B. (2006). Take 'five': the meaning and use of a number word. In Vogeleer, S. and Tasmowski, L., *Non-definiteness and Plurality*. Amsterdam: John Benjamins. 311-30. - Grice, H. P. (1975). Logic and Conversation. In P. Cole and J.L. Morgan (eds.), *Syntax and Semantics*, Vol. 3. New York: Academic Press. 41-58. - Horn, L. R. (1985). Metalinguistic negation and pragmatic ambiguity. *Language*, 61(1): 121-74. - Jansen, C. J. M. and Pollmann, M. M. W. (2001). On round numbers: pragmatic aspects of numerical expressions. *Journal of Quantitative Linguistics*, 8(3): 187-201.