

Department of Theoretical and Applied Linguistics

Constraints on quantifiers

Chris Cummins DTAL, University of Cambridge

PUQOL workshop at ESSLLI, 8-12 August 2011

The luxury of choice...

Bååth, Sauerland, and Sikstrøm (in preparation)

Speaker's perspective

Bååth, Sauerland, and Sikstrøm (in preparation)

Speaker's perspective (200 dots)

Speaker's perspective (200 dots)

Hearer's perspective

Bååth, Sauerland, and Sikstrøm (in preparation)

Hearer's perspective

Hearer's perspective

Usage and interpretation...

• Speakers are not choosing arbitrarily among possible semantically correct utterances

– Why?

- What are they doing?

• This information could enable hearers to adjust their interpretation of utterances

- How?

– Are they doing this?

Numerical quantification

• (Perhaps infinitely) many semantically truthful options are available for the speaker's use in a given situation

 More than 20/19/18...

 Fewer than 25/26/27...

 Between 20 and 25/19 and 26...

Determining the optimal utterance

• Considering the 'competitor' utterances

"more than 22" "more than 20" "between 20 and 30"...

- Arguments for and against each
- No intuitively clear winner
- Relevance appears only to offer post hoc explanation

Soft constraints?

• Idea: model speaker's decision procedure as a problem of multiple constraint satisfaction

- Advantages:
 - Theoretical frameworks exist to do this
 - Can yield quantifiable, testable predictions
 - Constraints have (accidentally) been studied...

Example: time reporting

- Van der Henst and colleagues
 - Precise vs. imprecise elicitation contexts
 - Analogue vs. digital watches
- Predictable trends analysed in RT terms
- However, individual factors touched upon:
 - Informativeness
 - Communicative preference for roundness
 - *(implicitly)* Numeral priming from watch-face
 - (implicitly) Granularity requirement

Proposed constraints

- Informativeness (e.g. Van der Henst, Carles and Sperber 2002)
- Numeral salience (e.g. Jansen and Pollmann 2001)
- Quantifier simplicity (e.g. Cummins and Katsos 2010)
- Granularity (e.g. Krifka 2009)
- Numeral / quantifier priming
- Functionally motivated/empirically validated
- Cross-disciplinary (cf. Musolino 2004)

Constraint-based model of speaker's choice

- Two main components:
 - (Individually) ranked list of relevant constraints
 - Selection procedure to determine optimal utterance
- Classical Optimality Theory account
 - Speaker-referring
 - Unidirectional
- Constraints are:
 - Preferably observed
 - Non-obligatory
 - Defined such that their violations can be quantified

Example 1: 'more than *n*'

- Problem:
 - 'more than *n*' seems to resist implicature
 - yet 'more than 100' seems to convey two bounds
- Constraint-based account
 - Consider 'more than *n*' vs. 'more than *m*'
 - If m > n, and speaker knows 'more than m' holds,
 m preferred unless (potentially)
 - *m* is less **salient** numeral than *n*
 - *m* is not a scale point at relevant **granularity** level
 - *n* is **primed** and *m* is not

Prediction

- 'more than *n*' +> 'not more than *m*'...
 - strongly if 'more than m' is a good candidate with respect to the relevant constraints
 - More specifically, if 'more than *m*' harmonically bounds 'more than *n*'
 - weakly if not

Experimental verification

Information: A newspaper reported the following.

- "[Numerical expression] people attended the public meeting about the new highway construction project."
- **Question:** Based on reading this, how many people do you think attended the meeting?

Between _____ and _____ people attended [range condition]

____ people attended [single number condition].

Cummins, Sauerland and Solt (submitted)

Experimental verification

Fielded on MTurk: 100 participants per condition ANOVAs show significant effects in both conditions (p < 0.05) Comments reflect explicit awareness of this reasoning

Effect of priming

- Less obvious prediction:
 - Prior mention of numeral attenuates implicature
 - A: We need to sell (*n*) tickets to break even.
 - B: We've already sold more than *n* tickets.
- No prior mention
 - Hearer reasons as before
- Prior mention
 - Speaker could have said 'more than *m*' for some *m* > *n*...
 - ...but maybe chose 'more than *n*' to satisfy numeral priming...
 - ...so implicature not available.

Experimental verification (2)

Please read the following short dialogues, and answer the questions by filling in a value for each blank space, according to your opinion. Consider each dialogue separately. Assume that participant B is well-informed, telling the truth, and being co-operative in each case.

- A: We need to sell (60) tickets to cover our costs. How are the ticket sales going?
- B: So far, we've sold fewer than 60 tickets.

How many tickets have been sold? From to, most likely

Experimental verification (2)

40 participants: "more than" and "fewer than" conditions. 3x2x2 ANOVA shows main effects of quantifier (F(1,41)= 8.66, p<0.01) roundness (F(2,80)=44.83, p<0.001) priming (F(1,40)=10.78, p<0.01).

Example 2: 'more than' vs. 'at least'

- Problem:
 - 'at least n' seems to convey sense of modality that 'more than n-1' lacks (Geurts and Nouwen 2007)
 - Expressions such as 'up to', 'maximally', etc. do likewise (Nouwen 2010)
 - This disappears in antecedent of conditional and certain other contexts (Cummins and Katsos 2010)

Example 2: 'more than' vs. 'at least'

Constraint-based account:

- Comparing 'more than *n*' with 'at least *n*':
 - Former harmonically bounds latter unless possible that 'exactly n' holds, so 'at least n' should convey this
- Reason to believe that 'at least' is more complex than 'more than', so violates **quantifier simplicity**
- Comparing 'more than *n*-1' with 'at least *n*':
 - Former harmonically bounds latter unless *n* is a more salient number than *n*-1
 - This appears to predict major usage trends

Example 3: bare numeral approximations

- Problem:
 - Round numbers have (preferentially?) round interpretations (Krifka 2002, 2009 i.a.)
- Constraint-based model:
 - If all numbers approximative on semantics...
 - ...then e.g. '49', '50' compete as expressions...
 - ...but '50' harmonically bounds '49'
 - Similar in spirit to Krifka (2009)'s bidirectional model
 - Might predict differentiation over time between round/non-round numeral semantics

Summary

- Constraint-based account is
 - Constituted of functionally motivated components
 - Useful as a source of (sometimes non-obvious) predictions
 - Applicable to some open questions on the semantics/pragmatics interface
 - Potentially psychologically plausible

- Constraint-based account is
 - Constituted of functionally motivated components
 - Useful as a source of (sometimes non-obvious) predictions
 - Applicable to some open questions on the semantics/pragmatics interface
 - Potentially psychologically plausible

- Constraint-based account is
 - Open to introduction of further functionally motivated constraints (QUD?)
 - Useful as a source of (sometimes non-obvious) predictions
 - Applicable to some open questions on the semantics/pragmatics interface
 - Potentially psychologically plausible

- Constraint-based account is
 - Open to introduction of further functionally motivated constraints (QUD?)
 - Able to generate further testable predictions, some of which might be illuminating
 - Applicable to some open questions on the semantics/pragmatics interface
 - Potentially psychologically plausible

- Constraint-based account is
 - Open to introduction of further functionally motivated constraints (QUD?)
 - Able to generate further testable predictions, some of which might be illuminating
 - Potentially applicable to other open questions in quantification (e.g. isomorphism)
 - Potentially psychologically plausible

- Constraint-based account is
 - Open to introduction of further functionally motivated constraints (QUD?)
 - Able to generate further testable predictions, some of which might be illuminating
 - Potentially applicable to other open questions in quantification (e.g. isomorphism)
 - Amenable to testing as a performance model for individual speakers