### Using epistemic state in drawing scalar inferences

Chris Cummins Napoleon Katsos

Research Centre for English and Applied Linguistics University of Cambridge

### Overview

- Epistemic state...
  - ...and its role in SIs...
  - ...in real time...
  - ...as shown experimentally...
  - …now and in future work

### Quantity implicature

- Speaker says *p*
- Speaker could have said *q*, where *q* entails *p*
- Therefore speaker does not believe *q*

• Requires, among other things, that the speaker knows whether *q* holds

### "Some (but not all)"



### "Some (but not all)"



### Alternatively...



### Alternatively...



Breheny, Katsos and Williams (2006), Katsos (2008) and (for a slightly different aspect of 'relevance') Bonnefon, Feeney and Villejoubert (2009)

### Alternatively...



### Possible derivations

| DEFAULT                    | CONTEXTUAL               |
|----------------------------|--------------------------|
| "Some"                     | "Some"                   |
| Some but not all           | Some (and maybe all)     |
| Cancel if "all" irrelevant | SI if "all" relevant and |
| Cancel if "all" not known  | known                    |

### Possible derivations

| DEFAULT                    | INTERMEDIATE              | CONTEXTUAL               |
|----------------------------|---------------------------|--------------------------|
| "Some"                     | "Some"                    | "Some"                   |
| Some but not all           | Some (and maybe all)      | Some (and maybe all)     |
| Cancel if "all" irrelevant | SI if "all" relevant      | SI if "all" relevant and |
| Cancel if "all" not known  | Cancel if "all" not known | known                    |

### Experiment 1: Control for "some"

# Experiment 1: Underinformative "some"

### Experiment 1: Epistemic critical case



## Experiment 1: Control for critical case

### Predictions

• (2/3)/5, 3/5

– Quick verification (all theories)

- 5/5
  - Default account (assuming cancellation costly)
    - Rejection faster than acceptance
  - Contextual accounts (assuming SI costly)
    - Acceptance faster than rejection

### Predictions

- (3/3)/5
  - Insufficient information to reject
  - Default
    - SI reading automatic, cancelled epistemically
    - Acceptance comparable with 5/5 acceptance
  - Contextual + immediate epistemic knowledge
    - SI fails; accept on par with 3/5, 2/3 cases
  - Contextual immediate epistemic knowledge
    - SI generated, then cancelled; slower than 3/5, 2/3

### Results



### but

#### Some = existential?

### "Existentialist" results



### "Non-existentialist" results



### Experiment 2 (future)

- Epistemic state of speaker ≠ that of hearer
- Will perspective-taking for this SI be
  - possible?
  - immediate?
  - costly?
- How does it compare to the shared ES case?

### Conclusions so far

- Epistemic information rapidly, if not immediately, integrated
- No evidence of default SIs being cancelled in light of epistemic data
- Underinformative utterances can give rise to delays (at least in this type of experiment) even when no SI / SI is not decisive

### Thank you!

#### REFERENCES

- Bonnefon, J.-F., Feeney, A. and Villejoubert, G. (2009). When some is actually all: Scalar implicatures in face-threatening contexts. *Cognition*, 112: 249-58.
- Breheny, R., Katsos, N. and Williams, J. (2006). Are scalar implicatures generated by default? *Cognition*, 100(3): 434-63.
- Katsos, N. (2008). The semantics/pragmatics interface from an experimental perspective: the case of scalar implicature, *Synthese*, 165: 358-401