Drawing and cancelling granularity-based inferences

Chris Cummins
RCEAL, University of Cambridge
c.r.cummins@gmail.com

Overview

- Scalar implicature (SI)
 - and its relevance to the number system
- Apparent failure of numerical SIs
- Granularity
 - and the inferences it licenses
 - as seen in new experimental data
- Contextual dependence of granularity inferences
 - Support for constraint-based model?

Scalar implicatures (SI)

- Pragmatic inferences
- Arise from 'informational scales', e.g. <some, all>
 - "Some of the delegates arrived on time"
 - => "not all of them did"
 - "John likes Mary"
 - => the speaker does not think that John *loves* Mary
- Generally, where $p \rightarrow q$, a speaker asserting q is unwilling to commit to p
 - If p is relevant and the speaker knows whether it is true,
 cooperativity => not-p

SIs and numerals

- Numerals can be cardinal or existential
 - "There are eight presentations today"
- Core meaning of numeral could in principle be either, i.e. "exactly" or "at least"
- If the latter, exact meaning comes from implicature
 - Scale is <..., (at least) eight, (at least) nine, ...>
 - Saying "eight" means "at least eight" and implicates "not {at least nine}"
 - Therefore "exactly eight" is the communicated meaning
- However, exact semantics more satisfactory (Breheny 2008)

Numerical quantifiers vs. SIs

- "More than n" fails to yield SIs
 - "There were more than 100 people there"
 - = |People there| > 100
- But still have a scale
 - <..., more than 100, more than 101, ...>
 - "There were more than 101 people there"...
 - "There were more than 100 people there"=> "It's possible that exactly 101 people were there"
 - Violates our intuitions

Implicature scales

- like, love, adore>
- "I love you"=> "I don't adore you" (!)
- Terms in a scale must be equally lexicalised (Horn)
- "adore" not as salient as "love" SI fails
- Similarly, "excellent" ! => "not unsurpassable"
- Related to availability of lexical items for reasoning; not arbitrary

Granularity

- Round numbers preferred (Jansen and Pollmann 2001)
 - because of dual nature of system (Dehaene 1997)
 - and so interpreted as approximations (Krifka 2009)
- Therefore no scale <..., more than 100, more than 101, ...>, so no SI
- But no reason to exclude e.g. <70, 80> as a scale...
- …and hence should admit scalar inferences

Experiment (MTurk)

- Participants given quantifying expressions asked for either
 - (i) lower and upper bound on the value, or
 - (ii) their best point estimate of the value
- Materials included numbers with different degrees of roundness (100, 110, 93)

Experiment (MTurk) – results

"More than n" - medians

Value of n	Lower bound	Upper bound	Preferred
100	100	149	110
110	110	127.5	112
93	93	100	94

Cancellable?

- Choice of number to be *relevant*
- "Are more than 20 people coming to lunch?"
 - Response needs to address QUD
- Implicatures arise because of what we don't say
 - Compulsion to use particular number suppresses this
 - Should get fewer implicatures of this type in a context where a number is already activated

Experiment 2

- Pencil-and-paper questionnaire
- Participants asked to give both the bounds and the preferred value for a given numerical expression
- Two conditions
 - 'Unprimed' expression is the answer to a neutral question
 - 'Primed' expression is the answer to a question containing the same numeral
- Prediction: unprimed => more inferences

Experiment 2 – results

"More than 100" - medians

Condition	Lower bound	Upper bound	Preferred
Primed	101	150	120
Unprimed	101	132.5	117.5

Constraint-based interpretation

- Actually, don't have to repeat numbers...
 - Could say "more than 30" or "17" or "34"
 - Could use a number activated from speaker's point of view, or believed to be relevant
- Hearer must be intelligent about inferring
 - Must consider contextual motivation (if any) for hearer's choice of utterance
- Proposal concerning this choice (Cummins & Katsos, under review) makes testable predictions about the inference patterns

Summary

- Granularity-driven inferences available in the numerical domain
 - Parallel to normal SIs
 - Respect structure of number system
- Evidence that these can be overridden by contextual considerations
- Precise nature of process to be determined

References

- Breheny, R. (2008). A new look at the semantics and pragmatics of numerically quantified noun phrases.
 Journal of Semantics, 25(2): 93-139.
- Dehaene, S. (1997). *The Number Sense*. New York: Oxford University Press.
- Jansen, C. J. M. and Pollmann, M. M. W. (2001). On round numbers: pragmatic aspects of numerical expressions. *Journal of Quantitative Linguistics*, 8(3): 187-201.
- Krifka, M. (2009). Approximate interpretations of number words: a case for strategic communication. In Hinrichs, E. and Nerbonne, J. (eds.), *Theory and Evidence in Semantics*. Stanford: CSLI Publications. 109-132.